Arthrobacter sp. EpRS66 and Arthrobacter sp. EpRS71: Draft Genome Sequences from Two Bacteria Isolated from Echinacea purpurea Rhizospheric Soil
نویسندگان
چکیده
منابع مشابه
Arthrobacter sp. EpRS66 and Arthrobacter sp. EpRS71: Draft Genome Sequences from Two Bacteria Isolated from Echinacea purpurea Rhizospheric Soil
Citation: Presta L, Fondi M, Perrin E, Maida I, Miceli E, Chiellini C, Maggini V, Bogani P, Di Pilato V, Rossolini GM, Mengoni A and Fani R (2016) Arthrobacter sp. EpRS66 and Arthrobacter sp. EpRS71: Draft Genome Sequences from Two Bacteria Isolated from Echinacea purpurea Rhizospheric Soil. Front. Microbiol. 7:1417. doi: 10.3389/fmicb.2016.01417 Arthrobacter sp. EpRS66 and Arthrobacter sp. EpR...
متن کاملGenome Sequence of the Polyphosphate-Accumulating Organism Arthrobacter sp. Strain PAO19 Isolated from Maize Rhizosphere Soil
Arthrobacter sp. strain PAO19 is a polyphosphate-accumulating organism isolated from maize rhizosphere soil. Here we report its genome sequence, which may shed light on its role in phosphate removal from water bodies. To our knowledge, this is the first genome announcement of a polyphosphate-accumulating strain of the genus Arthrobacter.
متن کاملDraft Genome Sequence of a Papaverine-Degrading, Gram-positive Arthrobacter sp., Isolated from Soil Near Hohenheim, Germany
We present the 4.8-Mb draft genome of a soil bacterium identified as Arthrobacter sp. This Gram-positive soil bacterium is able to use the aromatic compound papaverine as sole carbon source and will be examined for novel oxygenases.
متن کاملDraft Genome of the Arthrobacter sp. Strain Edens01
We report the draft genome sequence of Arthrobacter sp. strain Edens01, isolated from a leaf surface of a Rosa hybrid plant as part of the Howard Hughes Medical Institute-funded Student Initiated Microbial Discovery (SIMD) project. The genome has a total size of 3,639,179 bp and contig N50 of 454,897 bp.
متن کاملAtrazine and terbuthylazine mineralization by an Arthrobacter sp. isolated from a sugarcane-cultivated soil in Kenya.
A tropical soil from a Kenyan sugarcane-cultivated field showed a very high capability to mineralize (14)C-ring-labeled atrazine. In laboratory experiments this soil mineralized about 90% of the applied atrazine within 98 d. The atrazine-degrading microbial community was enriched in liquid cultures containing atrazine as the sole N source and 100 mgL(-1) glucose as additional C source. From the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Microbiology
سال: 2016
ISSN: 1664-302X
DOI: 10.3389/fmicb.2016.01417